
DOCUMENT RESUME

ED 308 835 IR 013 895

AUTHOR Ross, Steven M.; McCormick, Deborah
TITLE Computer Access and Flowcharting as Variables in

Learning Computer Programming.
PUB DATE Feb 89
NOTE 10p.; In: Proceedings of Selected Research Papers

presented at the Annual Meeting of the Association
for Educational Communications and Technology
(Dallas, TX, February 1-5, 1989). For the complete
proceedings, see IR 013 865.

PUB TYPE Reports - Research/Technical (143) --
Speeches /Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Academic Achievement; *Cognitive Style; *Computer

Literacy; *Flow Charts; Learning Strategies; Likert
Scales; Media Research; Multivariate Analysis;
*Programing; Secondary Education; Sex Differences;
*Student Attitudes

IDENTIFIERS BASIC Programing Language

ABSTRACT

Manipulation of flowcharting was crossed with
in-class computer access to examine flowcharting effects in the
traditional lecture/laboratory setting and in a classroom setting
where online time was replaced with manual simulation. Seventy-two
high school students (24 male and 48 female) enrolled in a computer
literacy course served as subjects. None had received any programming
instruction. Four treatment groups were arranged by crossing the
computer access variable (unlimited vs. limited) with flowcharting
(required vs. not required), and five instructional units dealing
with introductory concepts in the BASIC programming language were
presented in eighteen 50-minute class periods. Results showed that
group means on four of five posttest measures were directionally
higher for the limited-access group than for the unlimited-access
group; females performed better under limited access, while males
showed the opposite pattern; and low-ability students performed
better with unlimited access, while middle- and high-ability students
performed conversely. In addition, students performed better when not
required to submit flowcharts, and flowcharting appeared to be
regarded by many students as an entirely separate task rather than as
a programming aid. Gender was not significantly related to either
achievement or attitude. Three important considerations for the
teaching of programming are suggested by these results: (1) unlimited
computer access may be less important than is generally assumed; (2)

more time should be given to instruction in flowcharting than is
typically done; and (3) males and females appear to have the same
potential and instructional needs for learning programming. (12
references) (CGD)

Reproductions supplied by EDRS are the best that can be made
from the original document.

trip

CID
U b DEPARTMENT OF EaUCATION

Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

ralr4 Th s document has Peen reprOduced as
received from the person or organization
originating

C' Minor changes have been made to improve
reproduction quality

Points of new or opinions sated in thiS docu
ment do not necessarily represent official
OE RI position or policy

Title:

Computer Access and Flowcharting
as Variables in Learning
Computer Programming

Authors:

Steven M. Ross
Deborah McCormick

421

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Michael Simonson

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERh::)"

Computer Access and Flowcharting as Variables in

Learning Computer Programming

Steven M. Ross and Deborah McCormick

Foundations of Education
Memphis State University

Memphis, TN 38152

422

3

2

Computer Access and Flowcharting as Variables
in Learning Computer Programming

Research on pre-college programming instruction has often yielded
disappointing results. After completing such courses, students frequently
exhibit fundamental misconceptions and poor p7oblem-solving strategies
(Dalbey, Tournaire, & Linn, 1986). These outcomes suggest that traditional
methods of teaching programming in secondary schools may need to be
reoriented to better accommodate environments that often differ substantially
from college classes. One interest of the present study concerns the
provision of unlimited access to computers in programming classes. While the
importance of computer access is intuitively apparent, the notion has not
been thoroughly researched. On the one hand, it would seem that on-line
practice can promote discovery of design principles and procedures (Bagman &
Mayer, 1983). On the other hand, the novice's "rush to the computer" may be
associated with little program planning and consequently poor techniques and
conceptual understanding (Mayer, 1979; Pea & Kurland, 1983; Dalby et al.,
1986). From the latter perspective, limited computer access might engage
students to a greater extent in planning activities, and thus engender more
systematic problem-solving approaches than would occur with unlimited access.

The above rationale raises the additional question of whether planning
activities can be facilitated by using flowcharts to specify the program
logic and structure prior to writing code. Research on the benefits of
flowcharting, however, has been inconclusive (Glorfeld & Palko, 1984;
Schneiderman et al., 1982; Brook & Duncan, 1982). Accordingly, as an
extension of this earlier work, the present study crossed the manipulation of
flowcharting with in-class computer access, thus examining flowcharting
effects in (a) the traditional lecture/laboratory setting and (b) a classroom
setting replacing on-line time with manual simulation. A reasonable
assumption is that when computer access is not an immediate option, students
will use flowcharting more effectively as a design strategy. A supplementary
question conceived whether gender differences in programming performance
would occur under the different flowcharting and computer access conditions.
Previous results suggest that females generally perform as well as males at
learning to program (Madinach & Corno, 1985; and numerous others), but it
could be that different attitudes and learning strategies (Lockheed, 1985)
preeispose one group to adapt better in less structured (e.g., no flow
diagram; unlimited access) settings, and vice versa.

Method

Sample and Design

Subjects were 24 male and 48 female high school students enrollrrl in
four sections of a computer literacy course taught by the second author. All
had completed 12 weeks of the 18-week course, but had not yet received any
programming instructicl. They were assigned at random to four treatment
groups arranged by crossing the computer access variable (unlimited vs.
limited) with flowcharting (required vs. not required).

Initial analysis used a 2 (computer access) x 2 (flowcharting) x 2
(gender) MANOVA with dependent variables consisting of error recognition,
interpretation, programming templates, mental models, programming problem,

423

4

3

flowchart score, programming attitude, and flowcharting attitude. Subsequent
analysis, incorporating prior academic achievement as a variable, consisted
of a 2 x 2 x 3 MANOVA utilizing computer access, flowcharting, and ability
group (high, medium, or low) as independent variables.

Course Curriculum and Materials

Five instructional units dealing with introductory concepts in the BASIC
programming language were prezented in 18 50-minute class periods. Unit I
dealt with operational commands, such as RUN, LIST, SAVE, and editing
features. Students were also introduced to programming terminology and
fundamental concepts, as well as flowcharting techniques. Units II - V
presented applications using programming statements LET, PRINT, GOTO, INPUT,
and IF/THEN. The posttests described below were administered over a two-day
period immediately .ollowing the completion of Unit V.

Achievement posttest. The achievement posttest assessed performance
on five fundamental programming skills and on ability to utilize flowcharting
as a programming aid.

Subtest I, "Error Recognition," presented eight short groups of
programming code which contained either a syntax or logic error. Students
were asked to find and specify the cause of the error. Items were scored as
correct (1) or incorrect (0).

Subtest II, "Interpretation," presented students with four short
programs and required them to identify the purpose and output of the code.
Students were scored for both their narrative explanations and descriptions
of output (1 for correct, 0 for incorrect).

Subtest III, "7rogramming Templates" required students to write three
short segments of programming code which performed a fundamental procedure
such as averaging, counting, or evaluating input. Programs were scored as
correct in both syntax and logic (2), correct in either logic or syntax (1),
or totally incorrect (0).

Subtest IV, "Mental Models," was Jest jned from the .;c,rk of Bayman (1983)
to assess accuracy of students' mental models Df itatement axecution.
Students were given common proaramming stet and is::=.1 to describe in a
step-by-step fashion exactly what hasp- the st:t -,it execu d.
Explanations .were scored as correct (2), Inco-)Let (1;, f incorrect (0).

Subtest V, "Programming Problem," presented students with a problem for
which they had to develop a program. Students first designed a flowchart and
then wrote programming code. Flowcharts were scored as correct (3),
incomplete (2), incorrect (1), or no attempt (0). Programming score was
obtained by scoring individually five routines or templates required by the
programming problem (input routine; evaluation of input; use of summing
variable; combining a literal string and a variable in a print statement; and
recursion) in the same manner as Part III above (2, 1, or 0).

In scoring the posttest, clear rules were developed and strictly
followed to ensure objectivity. Also, identification numbers, rather than
names, were used in order to conceal subjects' identities during scoring.
Internal consistency alpha's ranged from .65 to .86 for all measures.

4 2 4 BEST COPY AVAILABLE

5

4

Attitude measure. Following the posttest, a 15-item attitude survey
was administered. Students were asked to respond to such statements as
"Programming is fun" by indicating the extent to which (on a Likert scale of
1 to 5) they agreed with the item. Statements related to either attitude
toward use of flowcharts or attitude toward programming. Ten additional
items were included to gather information on students' prior programming
experience, out of class computer access, and so on.

Procedure

Students in these classes had been accustomed to sharing a computer with
one or more partners during the prior 12 weeks of the semester. They were
told that for this programming unit, a new method of conducting the class was
to be tried, and that on-line computer time and classwork requirements would
be different depending on the instructional group in which they were placed.
The classes were quite willing to cooperate and, after the first few days of
instruction, there was never a need to discuss the different methods again.

Treatment began on Unit II, with the presentation of new concepts and
statements to the combined treatment groups. After the instructional period,
students practiced the statements that had been presented according to
assigned treatment procedures. Students in the unlimited-access group worked
in the laboratory section of the classroom where a computer was assigned to
each individual to use as he or she desired. Members of the limited-access
group worked at their desks in the lecture area of the classroom. These
students (ranging in number from 7 - 10) shared a single computer for testing
their code. Working with partners or in informal groups was not allowed,
although both groups were allowed to discuss problems and seek help from
other students or the teacher. It was expected that the limited-access group
would be more responsive to interaction with the teacher than the
unlimited-access group and, consequently, might receive more instruction and
attention. To control for this, the teacher did not initiate contact with
either group and responded when called on by asking a leading question or
making a suggestion rather than supplying the answer.

Half of the students in each of the access groups were required to
submit flowcharts with their assignments. The classes were introduced to the
technique of flowcharting as an instructional design aid in the first
programming unit. Flowcharting was initially demonstrated in a
non-programming application and applied to programming when the first
statement was introduced. One class period was devoted to instruction in
flowcharting and all students participated in exercises involving flowchart
creation. The teacher continued to demonstrate program flow using flowcharts
and to recommend then for program design. However, only those students in
the flowchart groups were required to submit them to fulfill their
assignments. The same basic procedures were followed for Units
Following Unit V, students completed the achievement posttest followed by the
attitude survey.

425

6

5

Results

Dependent variables were scores on the five programming achievement
subtests, flowcharting score, flowcharting attitude, and pn;gramming
attitude. All measures, with the exception of programming attitude, were
significantly interrelated (Median r = .55), implying the use of multivariate
analysis of variance (MANOVA) to decrease the risk of a Type I error. The
basic MANOVA was a three-way factorial consisting of 2(computer access) x
2(flowcharting) x either 2(gender) or 3(ability) group. A regression
solution was used in all multivariate and univariate two-factor analyses to
control possible biases caused by unequal n's. Initial analyses showed no
differences on cumulative attitude score due to either the computer access or
flowcharting variable.

Gender as an Individual Difference Variable

Analyses using gender as a grouping variable yielded only one
significant effect, the interaction between computer access and gender (p <
.02). Univariate tests of the interaction, however, were significant only on
mental models (Il< .03): females performed better on mental models in the
limited access group (M = 53% correct) than in the unlimited-access group
M = 34%); no differences were evidenced for males. In general, males scored
slightly but not significantly (11> .05) higher than females on the various
programming subtests.

Ability as an Individual Difference Variable

To examine the ATI involving academic ability, students were ranked
according to cumulative grade point averages and were divided into high,
medium, and low groups of approximately equal numbers based on those
rankings. As would be expected, the ability group main effect was
significant in the MANOVA (11 < .001) and in all univariate tests (high >
middle > low). More revealing was the significant multivariate
computer-access by ability ATI (II< .01), which was also significant in all
univariate tests except for programming templates. The consistent pattern
was for the low-ability group to perform better under unlimited- than
limited-computer access, whereas the opposite tendency occurred for middle-
and high-ability groups. Follow-up examination of the five ATIs showed that
each pattern was disordinal. Specifically, in each case, the unlimited
access mean was higher than the limited access mean for low-achievers (P <
.05), while the converse pattern occurred for middle- and high-achievers.

The MANOVA also yielded a significant flowcharting main effect (P <
.05). Univariate tests were significant for mental models and programming
problem. However, an examination of group means indicated that the effect
was not in the direction hypothesized. Students who were not required to
submit flowcharts tended to score higher on all subtests than those required
to submit them. On mental models, the no-flowchart group mean was 1.13
compared to the flowchart-required group mean of .80; on the programming
problem, the respective means were 1.08 and .65.

Discussion

The present results were inconsistent with some common assumptions
regarding the influences on learning programming of unlimited in-class

426

7

6

computer access, flowcharting, and gender. Accordingly, different ways of
conceptualizing and structuring programming instruction at the precollege
level are suggested. First, group means on four of five posttest measures
were directionally higher for the limited-access group than the
unlimited-access group. While it is clearly helpful to achievement to have
sufficient access to computers, imposing reasonable limitations on computer
access may encourage students to give greater attention to program design and
mental execution of code. This overall interpretation, however, was
qualified by several ATI effects. Females performed better under limited
access, while males showed the opposite pattern. One possible explanation
concerns females' generally lower confidence and greater anxiety regarding
computer interactions (Chen, 1986). Thus, a greater proportion of females
than males may have found it more comfortable to work without a computer.
Given that this effect occurred on only one dependent variable, however, its
importance should be questioned. A stronger and more consistent ATI pattern
was for low-ability students to perform better with unlimited access, and
conversely for middle- and high-ability students. Low- ability students, it
would seem, are less able to mentally simulate program execution and
therefore become more dependent on immediate computer feedback and concrete
contextual cues. Higher-ability students are better prepared to benefit from
the added cognitive demands of limited access and to use the increased
planning time effectively.

The significant flowcharting effects on posttest scores indicated that
students performed better when not required to submit flowcharts. One
explanation is that many did not adequately master flowcharting skills. In
fact, on a follow-up survey 65% reported understanding it "somewhat" and 19%
"not at all." Second, seemingly because of its pictorial orientation and
special symbol system, flowcharting appeared to be regarded by many students
as an entirely separate task, rather than as a programming aid. Perhaps,
similar to how sentence diagramming in English is taught, flowcharting may be
more beneficial if introduced after students have acquired a fundamental
understanding of programming processes. It is also revealing that over 65%
of the flowchart group reported creating the flowchart after having written
the associated programming code. These negative experiences undoubtedly
contributed to the flowchart group's rating of programming as "more
frightening" compared to the no-flowchart group. Gender was not
significantly related to either achievement or attitudes. It is noteworthy,
however, that in this elective high school literacy course, taught by a
female instructor, females outnumbered males by 2:1, a direct contrast with
typical ratios (Lockheed, 1985). As Linn (1985) has noted, the main problem
for female students has traditionally been lack of participation, not of
ability, in programming classes.

The above results suggest three major considerations for the teaching of
programming. First, unlimited computer access may be less important than is
generally assumed, especially for middle- and high-achievers. Teachers might
consider encouraging (or requiring) the latter groups to spend more time
designing and mentally simulating procedures away from the computer. Second,
if flowcharting is to be useful as a design aid, considerably more time and
emphasis should be given to its instruction than is done typically. Poorly
formulated flowcharts can only provide weak foundations for developing
programs. Third, as other recent studies have suggested, males and females
appe:.i: to have much the same potential and instructional needs for learning
programming. Seemingly, students' increasing exposure to computers in early

4?7
8

7

grades and to positive female role models (as in the present study) will make
female participation in programming classes less of a problem over Hine.

198

9

8

References

Bayman, P. (1983, August). The effects of instructional procedures on beginning
programers' mental models. Paper presented at the annual meeting of the
American Psychological Association, Anaheim, CA.

Bayman, P. & Mayer, R.E. (1983). Diagnosis of beginning programmers'
misconceptions of BASIC programming statements. Communications of the ACM,
26, 677-679.

Brook, J.B., & Duncan, K.D, (1982). An experimental study of flowcharts as an aid
in identification of procedural faults. Ergonomics, 23, 387-399.

Chen, M. (1986). Gender and computers: The beneficial effects of experience on
attitudes. Journal of Educational Computing Research, 2, 265-282.

Dalbey, J., Tournaire, F., & Linn, M. (1986). Making programming instruction
cognitively demanding: An intervention study. Journal of Research in Science
Teaching, 23, 427-436.

Glorfeld, L.G., & Palko, J. (1984). Flowcharts in data processing education: An
empirical review. The Journal of Data Education, 20, 18-20.

Linn, M.C. (1985). Gender equity in computer learning environments. Computers
and the Social Sciences, 1, 19-27.

Lockheed, M.E. (1985). Women, girls, and computers: A first look at the
evidence. Sex Roles, 13, 229-245.

Mandinach, E.B., & Corno, L. (1985). Cognitive engagement variations among
students of different ability level and sex in a computer problem solving
game. Sex Roles, 13, 241-251.

Mayer, R.E. (1979). A psychology of learning BASIC. Communications of the ACM,
589-593.

Pea, R.D., & Kurland, D.M. (1983). On the cognitive prerequisites of learning
computer programming (Tech. Rep. No. 16). New York: Bank Street College of
Education, Center for Children and Technology

Schneiderman, B., Mayer, R.E., McKay, D., & Heller, P. (1982). Experimental
investigations of the utility of detailed flowcharts in programming.
Communications of the ACM, 20, 373-381.

99

10

